Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 17.562
1.
Cells ; 13(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38727278

Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.


Spermatogonia , Humans , Animals , Male , Spermatogonia/cytology , Spermatogonia/metabolism , Adult Germline Stem Cells/metabolism , Adult Germline Stem Cells/cytology , Cell Differentiation/genetics , Spermatogenesis/genetics , Transcriptome/genetics , Adult , Mice , Fetus/cytology , Testis/cytology , Testis/metabolism , Rodentia , Rats , Single-Cell Analysis
2.
Sci Rep ; 14(1): 8956, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637569

As known "ecosystem engineers", beavers influence river hydrology, geomorphology, biochemistry, and biological assemblages. However, there is a lack of research regarding the effects of beaver activities on freshwater meiofauna. In this study, we investigated the taxonomic and functional composition of the benthic copepod assemblage of a segment of the Tiber River (Italy) where a beaver dam, created about 7 weeks before our survey, had formed a semi-lentic habitat upstream and a lotic habitat downstream of the dam. We also analyzed the copepod assemblage before and after a flood event that destroyed the beaver dam, providing a unique opportunity to observe changes in a naturally reversing scenario. Our analyses revealed that, while the taxonomic composition and functional traits of the copepod assemblage remained largely unchanged across the recently formed semi-lentic and lotic habitats, substantial differences were evident between the dammed and undammed states. The dammed state showed lower copepod abundances, biomass, and functionality than the undammed one. These results highlight the role of beaver dams in changing the composition and functionality of meiofaunal assemblages offering insights into the dynamic interactions within aquatic ecosystems.


Copepoda , Ecosystem , Animals , Rodentia , Rivers , Biomass
3.
Cells ; 13(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38607011

Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals' activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity.


Calcitonin Gene-Related Peptide , Migraine Disorders , Female , Rats , Male , Animals , Calcitonin Gene-Related Peptide/metabolism , Glycerol , Rats, Wistar , Rodentia/metabolism , Nitric Oxide , Nociception , Nitroglycerin/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Sugars
4.
Anat Histol Embryol ; 53(3): e13043, 2024 May.
Article En | MEDLINE | ID: mdl-38666620

Capybara is considered the largest living rodent and is widespread distributed in the South America and in the Brazilian territory. The purpose of this study was to provide the anatomical description of the brain in the capybara (Hydrochoerus hydrochaeris) using magnetic resonance imaging (MRI). Brains of ten normal capybaras were imaged and sectioned in the anatomical studies. MRI was acquired on 0.25 Tesla equipment, promoting good-quality images capable to identify and classify the main anatomical structures of clinical interest. MRI reference images were validated by comparing them with gross anatomical sections. The capybara sulci and gyri were named for its similar location and orientation to those described in the previous descriptions in the capybara and in the domestic dog. Capybaras presented prominent cerebral sulcus and gyrus in relation to other caviomorph rodents, but in reduced number when compared to domestic animals and other wild mammals such as elephants and giraffes. The findings of this study indicate that the shape of the capybara brain is remarkably similar to that of the caviomorph rodents with a higher neocortilization. The capybara rhinencephalon was well-developed implying a good sense of smell. Due to this development of the rhinencephalon, we can suggest that capybara brain is a macrosmatic brain. The MRI and gross anatomical sections of capybara brain may help veterinary researchers and clinicians increase the accuracy of brain MRI scans interpretation in these animals.


Brain , Magnetic Resonance Imaging , Rodentia , Animals , Rodentia/anatomy & histology , Magnetic Resonance Imaging/veterinary , Brain/anatomy & histology , Brain/diagnostic imaging , Male , Female
5.
BMC Genomics ; 25(1): 380, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632506

BACKGROUND: Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear. RESULTS: Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin. CONCLUSIONS: P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.


Borrelia , Microbiota , Orientia tsutsugamushi , Scrub Typhus , Trombiculidae , Wolbachia , Animals , Scrub Typhus/epidemiology , Scrub Typhus/microbiology , Trombiculidae/genetics , Trombiculidae/microbiology , Wolbachia/genetics , Phylogeny , Borrelia/genetics , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , Saudi Arabia , Orientia tsutsugamushi/genetics , Rodentia/genetics , DNA , Orientia
6.
Front Neural Circuits ; 18: 1286111, 2024.
Article En | MEDLINE | ID: mdl-38638163

Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.


Brain , Rodentia , Animals , Humans , Aged , Prefrontal Cortex/physiology , Neurons/physiology , Cognition/physiology
7.
J Urban Health ; 101(2): 308-317, 2024 Apr.
Article En | MEDLINE | ID: mdl-38575725

Common mental disorders such as depression and anxiety are prevalent globally, and rates are especially high in New York City (NYC) since the COVID-19 pandemic. Neighborhood social and physical environments have been found to influence mental health. We investigated the impact of neighborhood social cohesion and neighborhood rodent sightings (as an indicator of neighborhood cleanliness) on nonspecific serious psychological distress (NSPD) status using 2020 NYC Community Health Survey data from 8781 NYC residents. Multivariable logistic regression was used to evaluate the relationships among social cohesion, rodent sightings, and NSPD adjusted for confounders and complex sampling and weighted to the NYC population. Effect measure modification of rodent sightings on the effect of social cohesion on NSPD was evaluated on the multiplicative scale by adding the interaction term to the multivariable model and, if significant, stratifying on the effect modifier, and on the additive scale using the relative excess risk due to interaction (RERI). Social cohesion was found to decrease the odds of NSPD, and rodent sightings were found to increase the odds of NSPD. We found significant evidence of effect measure modification on the multiplicative scale. In the stratified models, there was a protective effect of social cohesion against NSPD among those not reporting rodent sightings, but no effect among those reporting rodent sightings. Our findings suggest that both neighborhood social cohesion and rodent sightings impact the mental health of New Yorkers and that rodent infestations may diminish the benefit of neighborhood social cohesion.


COVID-19 , Mental Health , Residence Characteristics , New York City/epidemiology , COVID-19/psychology , COVID-19/epidemiology , Humans , Male , Female , Adult , Animals , Middle Aged , Residence Characteristics/statistics & numerical data , Rodentia , SARS-CoV-2 , Neighborhood Characteristics , Young Adult , Aged , Adolescent , Social Environment , Health Surveys , Pandemics
8.
Birth Defects Res ; 116(4): e2336, 2024 Apr.
Article En | MEDLINE | ID: mdl-38624050

BACKGROUND: According to reports, prenatal exposure to valproic acid can induce autism spectrum disorder (ASD)-like symptoms in both humans and rodents. However, the exact cause and therapeutic method of ASD is not fully understood. Agmatine (AGM) is known for its neuroprotective effects, and this study aims to explore whether giving agmatine hydrochloride before birth can prevent autism-like behaviors in mouse offspring exposed prenatally to valproic acid. METHODS: In this study, we investigated the effects of AGM prenatally on valproate (VPA)-exposed mice. We established a mouse model of ASD by prenatally administering VPA. From birth to weaning, we evaluated mouse behavior using the marble burying test, open-field test, and three-chamber social interaction test on male offspring. RESULTS: The results showed prenatal use of AGM relieved anxiety and hyperactivity behaviors as well as ameliorated sociability of VPA-exposed mice in the marble burying test, open-field test, and three-chamber social interaction test, and this protective effect might be attributed to the activation of the ERK/CREB/BDNF signaling pathway. CONCLUSION: Therefore, AGM can effectively reduce the likelihood of offspring developing autism to a certain extent when exposed to VPA during pregnancy, serving as a potential therapeutic drug.


Agmatine , Autism Spectrum Disorder , Animals , Female , Male , Mice , Pregnancy , Agmatine/pharmacology , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/prevention & control , Brain-Derived Neurotrophic Factor , Calcium Carbonate , Rodentia , Signal Transduction , Social Behavior , Valproic Acid/adverse effects
9.
PLoS One ; 19(4): e0300523, 2024.
Article En | MEDLINE | ID: mdl-38598501

Rodents are recognized as the main reservoirs of Leptospira spp. Rats, in particular, serve as hosts for the widely predominant Leptospira interrogans serovar Icterohaemorrhagiae, found worldwide. Several studies have shown the importance of other reservoirs, such as mice or hedgehogs, which harbor other leptospires' serovars. Nevertheless, our knowledge of circulating Leptospira spp. in reservoirs other than rats remains limited. In this context, we proposed an eco-health approach to assess the health hazard associated with leptospires in urban green spaces, where contacts between human/small mammals and domestic animals are likely. We studied the prevalence, the diversity of circulating strains, and epidemiology of pathogenic Leptospira species in small terrestrial mammal communities (rodents and shrews), between 2020-2022, in two parks in Lyon metropolis, France. Our study showed a significant carriage of Leptospira spp. in small terrestrial mammals in these parks and unveiled a global prevalence rate of 11.4%. Significant variations of prevalence were observed among the small mammal species (from 0 to 26.1%), with Rattus norvegicus exhibiting the highest infection levels (26.1%). We also observed strong spatio-temporal variations in Leptospira spp. circulation in its reservoirs. Prevalence seems to be higher in the peri-urban park and in autumn in 2021 and 2022. This is potentially due to differences in landscape, abiotic conditions and small mammal communities' composition. Our study suggests an important public health relevance of rats and in a lesser extent of other rodents (Apodemus spp., Clethrionomys glareolus and Mus musculus) as reservoirs of L. interrogans, with rodent species carrying specific serogroups/serovars. We also emphasize the potential hazard associated between the shrew Crocidura russula and L. kirschneri. Altogether, these results improve our knowledge about the prevalence of leptospirosis in an urban environment, which is an essential prerequisite for the implementation of prevention of associated risks.


Leptospira , Leptospirosis , Humans , Rats , Mice , Animals , Leptospira/genetics , Parks, Recreational , Prevalence , Leptospirosis/epidemiology , Leptospirosis/veterinary , Rodentia , Shrews , France , Genetic Variation
10.
Microbiome ; 12(1): 72, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600530

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Chiroptera , Viruses , Animals , Animals, Wild , Genome, Viral/genetics , Phylogeny , Recombination, Genetic , Rodentia , Uganda/epidemiology
11.
Transl Psychiatry ; 14(1): 186, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605027

Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.


Deep Brain Stimulation , Epilepsy , Mice , Humans , Rats , Animals , Deep Brain Stimulation/methods , Rodentia , Brain , Hippocampus
12.
Science ; 384(6693): 338-343, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38635709

The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.


Neurons , Synapses , Animals , Humans , Synapses/physiology , Neurons/physiology , Pyramidal Cells/physiology , Rodentia , Nerve Net/physiology
13.
Proc Natl Acad Sci U S A ; 121(15): e2315167121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38557177

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.


Default Mode Network , Rodentia , Rats , Animals , Cerebral Cortex , Brain/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging
14.
J Neural Eng ; 21(2)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38579742

Objective.Electrical neuromodulation is an established non-pharmacological treatment for chronic pain. However, existing devices using pulsatile stimulation typically inhibit pain pathways indirectly and are not suitable for all types of chronic pain. Direct current (DC) stimulation is a recently developed technology which affects small-diameter fibres more strongly than pulsatile stimulation. Since nociceptors are predominantly small-diameter Aδand C fibres, we investigated if this property could be applied to preferentially reduce nociceptive signalling.Approach.We applied a DC waveform to the sciatic nerve in rats of both sexes and recorded multi-unit spinal activity evoked at the hindpaw using various natural stimuli corresponding to different sensory modalities rather than broad-spectrum electrical stimulus. To determine if DC neuromodulation is effective across different types of chronic pain, tests were performed in models of neuropathic and inflammatory pain.Main results.We found that in both pain models tested, DC application reduced responses evoked by noxious stimuli, as well as tactile-evoked responses which we suggest may be involved in allodynia. Different spinal activity of different modalities were reduced in naïve animals compared to the pain models, indicating that physiological changes such as those mediated by disease states could play a larger role than previously thought in determining neuromodulation outcomes.Significance.Our findings support the continued development of DC neuromodulation as a method for reduction of nociceptive signalling, and suggests that it may be effective at treating a broader range of aberrant pain conditions than existing devices.


Chronic Pain , Rodentia , Rats , Animals , Nociception , Rats, Sprague-Dawley , Spinal Cord/physiology
15.
PLoS One ; 19(4): e0301841, 2024.
Article En | MEDLINE | ID: mdl-38626103

The number of people suffering from scrub typhus, which is not of concern, is increasing year by year, especially in Yunnan Province, China. From June 1, 2021 to August 15, 2022, a total of 505 mammalian samples were collected from farm, forest, and residential habitats with high incidence of scrub typhus in Yunnan, China, for nPCR (nested PCR) and qPCR (quantitative real-time PCR) detection of Orientia tsutsugamushi. A total of 4 orders of murine-like animals, Rodentia (87.52%, n = 442), Insectivora (10.29%, n = 52), Lagomorpha (1.79%, n = 9) and Scandentia (0.40%, n = 2) were trapped. Comparing the qPCR infection rates in the three habitats, it was no significant difference that the infection rate of residential habitat (44.44%) and that of the farm habitat (45.05%, P>0.05), which is much larger than that of the forest habitat (3.08%) (P<0.001). Three genotypes (Karp-like, Kato-like and TA763-like) of O. tsutsugamushi were found from Yunnan, China in this study.


Orientia tsutsugamushi , Scrub Typhus , Humans , Animals , Mice , Scrub Typhus/diagnosis , Farms , China/epidemiology , Orientia tsutsugamushi/genetics , Rodentia/genetics , Real-Time Polymerase Chain Reaction , Epidemiologic Studies , Forests , Eulipotyphla/genetics
16.
Cryo Letters ; 45(2): 134-138, 2024.
Article En | MEDLINE | ID: mdl-38557992

BACKGROUND: Examining semen cryopreservation in Calomys laucha offers valuable insights for reproductive research and species conservation. OBJECTIVE: To determine the most effective sugar for the cryopreservation of C. laucha semen. MATERIALS AND METHODS: Using 36 epididymides from C. laucha, semen samples were diluted in a 3% skimmed milk medium supplemented with one of four sugars (glucose, fructose, lactose, or sucrose) at a concentration of 0.3 M. These mixtures underwent a conditioning phase at 37 degree C for 10 min, cooled to -80 degree C for another 10 min, and were subsequently stored in liquid nitrogen. RESULTS: Upon thawing, samples treated with lactose and glucose solutions show superior sperm motility, achieving 8.2% and 10.0% respectively, in contrast to the fructose (2.0%) and sucrose (4.1%) mixtures. Furthermore, samples preserved in glucose registered the highest sperm penetration rates, reaching 44.9%. CONCLUSION: Our findings suggest that a cryopreservation medium containing 0.3 M glucose can contribute to the safeguarding C. laucha rodent semen. https://doi.org/10.54680/fr24210110612.


Semen Preservation , Semen , Animals , Male , Cryopreservation , Lactose , Rodentia , Sperm Motility , Glucose/pharmacology , Fructose , Sucrose/pharmacology , Spermatozoa , Cryoprotective Agents
17.
J Pineal Res ; 76(3): e12950, 2024 Apr.
Article En | MEDLINE | ID: mdl-38558122

Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.


Melatonin , Pineal Gland , Animals , Pineal Gland/metabolism , Genes, Homeobox , Melatonin/metabolism , Rodentia/genetics , Rodentia/metabolism , Transcription Factors/metabolism , Circadian Rhythm
18.
Anim Cogn ; 27(1): 29, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558203

In the first two experiments an empty tube open at one end was placed in different locations. Male hamsters, tested one at a time, tended to stay close to the tube or in it. During the first minute of the first 4 sessions of Experiment 3, the hamster was unrestrained. If it entered the tube, it was locked within the tube. If it did not enter the tube during the first min, it was placed in it, and the tube was locked. Fifteen min later, the tube was opened, and the hamster was unrestrained for a further 20 min. The tube remained open during Session 5. Hamsters spent more time near the tube than predicted by chance and continued to enter the tube although tube-occupancy duration did not differ from chance levels. In Experiment 4, male rats were tested in two groups: rats in one group had been previously trapped in a tube and rats in the other group allowed to freely explore the test space. For the first two min of each of four 20-min sessions, trapped-group subjects were permitted to move about the chamber unless they entered the tube. In that case, they were locked in for the remainder of the session. If, after two min, they did not enter the tube, they were locked in it for the remaining 18 min. Free rats were unrestricted in all sessions. In Session 5, when both groups were permitted to move freely in the chamber, trapped and free rats spent more time in and near the tube than predicted by chance. These data show tube restraint does not seem to distress either hamsters or rats.


Empathy , Rodentia , Humans , Rats , Male , Animals
19.
BMC Vet Res ; 20(1): 161, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678268

BACKGROUND: SARS-CoV-2 is believed to have originated from a spillover event, where the virus jumped from bats to humans, leading to an epidemic that quickly escalated into a pandemic by early 2020. Despite the implementation of various public health measures, such as lockdowns and widespread vaccination efforts, the virus continues to spread. This is primarily attributed to the rapid emergence of immune escape variants and the inadequacy of protection against reinfection. Spillback events were reported early in animals with frequent contact with humans, especially companion, captive, and farmed animals. Unfortunately, surveillance of spillback events is generally lacking in Malaysia. Therefore, this study aims to address this gap by investigating the presence of SARS-CoV-2 neutralising antibodies in wild rodents in Sarawak, Malaysia. RESULTS: We analysed 208 archived plasma from rodents collected between from 2018 to 2022 to detect neutralising antibodies against SARS-CoV-2 using a surrogate virus neutralisation test, and discovered two seropositive rodents (Sundamys muelleri and Rattus rattus), which were sampled in 2021 and 2022, respectively. CONCLUSION: Our findings suggest that Sundamys muelleri and Rattus rattus may be susceptible to natural SARS-CoV-2 infections. However, there is currently no evidence supporting sustainable rodent-to-rodent transmission.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Animals , COVID-19/veterinary , COVID-19/epidemiology , COVID-19/immunology , Malaysia/epidemiology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Rats/virology , Antibodies, Neutralizing/blood , Seroepidemiologic Studies , Borneo/epidemiology , Rodentia/virology
20.
Mol Biol Evol ; 41(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38649162

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Evolution, Molecular , Multigene Family , Phylogeny , Receptors, Odorant , Rodentia , Vomeronasal Organ , Animals , Receptors, Odorant/genetics , Vomeronasal Organ/metabolism , Rodentia/genetics , Receptors, G-Protein-Coupled/genetics , Taste/genetics , Smell/genetics , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism
...